Exciting Developments at ATPIO

Since it was founded fourteen years ago, ATPIO made a lot of progress towards fulfilling its mission. We believe that we can do a lot more. The ATPIO board will announce a couple of new and bold initiatives at the annual meeting to be held at TRB conference on January 13, 2019.

We believe these initiatives would help propel ATPIO into limelight of scholarly world and play a major role in mentoring young researchers and practitioners in the transportation world.

Hope you can join us.

Introducing Student Lounge

Welcome to the “Student Lounge” of ATPIO. This is a virtual lounge of sorts for students pursuing advanced degrees in transportation-related disciplines(both at undergraduate and graduate levels) at various universities worldwide. The purpose of this lounge/corner is to create a sense of community, network and share important developments among students with comparable educational and research goals. Student-written short articles technical or even the student experience are most welcome.

This lounge is managed exclusively by students. If you have something to share, please reach out to one of the following editors of the Lounge.

 

Smrithi Ajit smrithiajit@gmail.com Iowa State University
Koti Reddy Allu kallu@uci.edu University of California, Irvine
Pranamesh Chakraborthy pranameshbesu@gmail.com Iowa State University
Subhadipto Poddar spoddar@iastate.edu Iowa State University
Siddartha Rayaprolu srayapro@gmu.edu George Mason University
Archana Venkatachalapathy archanav@iastate.edu Iowa State University

Shared mobility and its impact on emissions

by Siddartha Rayaprolu

Traditionally within the United States, transportation choices have featured personal vehicles and to a lesser extent alternative modes, like transit, bicycles, and taxis. Bureau of Transportation Studies (BTS) indicated that more than 75% of the trips are “Drive alone” and the remaining 25% trips include all the alternative transport modes. A study conducted by researchers in California suggests that the United States transportation activity by itself accounts for nearly 70% of all petroleum consumption and about 30% of all the Greenhouse gas emissions.  It roughly consumes 96% of all energy in the form of gasoline or diesel (Martin, E. W., & Shaheen, S. A. (2011)). 

Source: EPA’s Inventory of Greenhouse Gas Emissions and Sinks 1990-2016

Revisiting the impacts of vehicular pollution, the EPA states that the majority of greenhouse gas emissions from transportation are due to the combustion of fossil fuels resulting in Carbon Dioxide (CO2) emissions. Majority of the Carbon Monoxide (CO) is produced when the vehicle is moving slow or when it is stuck in a poor traffic condition. Traffic congestions which are a product of the higher volume of vehicular flow lead to higher production of greenhouse gases.

Thanks to the emerging technologies as travelers are currently able to hail a private driver and vehicle (e.g., Lyft and Uber); rent an automotive or a bicycle for a brief trip (e.g., Zipcar and Bay area Bike Share); ride a shuttle on-demand (e.g., Bridj, Chariot, Via); and have groceries or takeaway delivered in someone’s personal vehicle (e.g., Postmates and Sidecar Deliveries)—all with the support of the web and smartphones. These innovative transportation services are increasing at a time when agencies, like State Departments of Transportation (DOTs) and regional Metropolitan Planning Organizations (MPOs), are more and more targeted on rising system potency and alleviating the negative environmental impacts of transportation.

Researchers around the world have studied and quantified the impacts of these shared mobility platforms and have suggested that there is a considerable impact on the environment and the traffic behavior with the improving usage statistics of these modes.

Although the percentage impact of Bike-share has not been widely quantified, early documented impacts include increased mobility, reduced GHG emissions, reduced automobile use, economic development, and health advantages. Past research by Shaheen, S. A. et al (2014) indicates that 50% of the respondents in their survey reported a reduction in personal vehicle usage. 5.5% of the respondents have reported having sold or postponed a vehicle purchase, 58% increased cycling.

Car-pooling / Ride-sharing reduces about 109,000 to 155,000 tons of GHG/year by observed impact (evaluation based on emissions that physically occur) and between 158,000 to 224,000 tons of GHG/year for full impact (based on emissions that would have happened anyway but were avoided or delayed due to carsharing). A study in SF estimated a total reduction of 450,000 to 900,000 gallons of gasoline per year is observed in the San Francisco Bay Area, which accounts up to 50-100 gallons per participant. Minett, P., & Pearce, J. (2011) estimated a total reduction of 450,000 to 900,000 gallons of gasoline per year is observed in San Francisco Bay Area, which accounts up to 50-100 gallons per participant.

All these aside, Ride-hailing is observed to have a negative impact on reducing vehicle miles traveled (VMT) by cannibalizing the public transit ridership by 33% and by 8% due to induced travel effect on the carless community. A study conducted by Henao, A. (2017) in Denver, indicated that the ride-hailing takes more vehicular trips to move fewer people (approximately, 100 vehicle miles to transport a passenger 60.8 miles (or nearly 40% out of service miles).

The more the number of vehicles on the road, the higher is the volume, the lower is the flow and hence the higher will be the emissions due to CO. Policy briefings are always important in order to facilitate the free movement of the HOVs. Also, licensure laws have to be adaptive in design, based on the city and its capacity to accommodate these shared vehicular fleet, which will stay on the roads most of the time. The below figure by Minett, P., & Pearce, J. describe the relationship between the energy consumption, vehicular flow rate, and speed.

The relationship between the speed/flow, vehicular congestions & Fuel consumption [Minett, P., & Pearce, J. (2011)]

Shared mobility collectively has a great potential to reduce the greenhouse gas emissions, however, there are certain limitations in terms of the policies and the accommodations that have to be addressed succinctly in order to facilitate a smooth transition between the modes. Policy advocacy plays an important role in controlling the food chain for these shared modes to fit into the bigger picture of the transport business model, otherwise might lead to cannibalization of existing low emission alternatives by smaller capacity cars that make multiple trips to facilitate the utilitarian needs of the users.

References:

Martin, E. W., & Shaheen, S. A. (2011). Greenhouse gas emission impacts of carsharing in North America. IEEE Transactions on intelligent transportation systems, 12(4), 1074-1086.

Shaheen, S. A., Martin, E. W., Cohen, A. P., Chan, N. D., & Pogodzinski, M. (2014). Public Bikesharing in North America During a Period of Rapid Expansion: Understanding Business Models, Industry Trends & User Impacts, MTI Report 12-29.

Minett, P., & Pearce, J. (2011). Estimating the energy consumption impact of casual carpooling. Energies, 4(1), 126-139.

Kaviti, S., M.M. Venigalla, S. Zhu, K. Lucas, and S. Brodie. (2018). Impact of Pricing and Transit Disruptions on Bikeshare Ridership and Revenue. Transportation. Springer Publications. (http://doi.org/10.1007/s11116-018-9904-5).

 

Graduate Student Receives TRB Travel Support from ATPIO

Mr. S. Marisamynathan, who is completing his doctoral research at IIT Bombay was selected by ATPIO to receive partial travel support for presenting his paper at the 96th Annual Meeting of the Transportation Research Board (TRB) at the Walter E. Washington Convention Center in Washington, DC, January 8-12, 2017.

The paper presented at TRB by Mr. Marisamynathan was titled “Modeling Pedestrian Level of Service
at Signalized Intersection Under Mixed Traffic Conditions” and was co-authored by Prof. P. Vedagiri of IIT Bombay.   Based on peer-reviews by the TRB standing committee on Transportation in the Developing Countries, it was also later accepted for publication in the Transportation Research Record Journal of TRB.  The paper can be obtained at http://trrjournalonline.trb.org/doi/abs/10.3141/2634-13

A native of Tamil Nadu, Mr. Marisamynathan completed his BE in Civil Engineering at Alagappa Chettiar College of Engineering and Technology, Karaikudi, and his M.E. in Transportation Engineering at the College of Engineering, Guindy (Anna University), Chennai.  He is completing his PhD in Transportation Systems Engineering at the Indian Institute of Technology, Bombay, under the advise of Prof. P. Vedagiri on “Modelling pedestrian crossing behaviour and level of service at signalized intersections”.

A cash award and certificate was presented to him by Dr. Vijay Gopu and Salil Gokhale of the ATPIO Board at the annual meeting of ATPIO at TRB, on January 8, 2017.   ATPIO welcomes sponsors and hopes to provide such support for graduate students in the future as well.